学术报告
【学术报告】(线上)Stability of noncompact capillary surfaces
编辑:魏佳发布时间:2021年10月25日

报告人:洪寒(清华大学丘成桐数学中心)

时  间:113日下午15:00

地  点:腾讯会议ID785 192 925(无密码)

内容摘要:

In this talk, we will discuss stability results for noncompact capillary surfaces. A classical result in minimal surface theory says that a stable complete minimal surface in $\mathbb{R}^3$ must be a plane. We show that, under certain curvature assumptions, a weakly stable capillary surface in a 3-manifold with boundary has only three possible topological configurations. In particular, we prove that a weakly stable capillary surface in a half-space of $\mathbb{R}^3$ which is minimal or has the contact angle less than or equal to $\pi/2$ must be a half-plane.

人简介:

洪寒,丘成桐数学中心(YMSC)博士后,清华大学水木学者。主要研究领域是凸几何和几何分析,在容量Minkowksi问题,常均曲面摩尔斯指标估计,特征值优化等方面取得了若干成果,已在CVPDE, IMRN, JGA等杂志发表了数篇论文。

 

联系人:夏超