报告人:陈汉(德国哥廷根大学)
时 间:2023年11月5日15:30
地 点:海韵园数理大楼686会议室
内容摘要:
The Diophantine equation of Nagell-Ljunggren $\frac{x^{n}-1}{x-1}=y^{q} $ has six known solutions $(x, y, n, q) \in \{ (3, \pm 11, 5, 2),(7, \pm 20, 4, 2),(18, 7, 3, 3),(-19, 7, 3, 3) \} $ in integers $x, y, q$ and $n$ with $|x|, |y|, q>1$ and $n>2$. The Conjecture of Nagell and Ljunggren states that these are the only solutions in integers. We show that, for $p > 3$, it has no positive solutions under the condition that $q$ does not divide $h_p^-$, the minus part of the class number of the $p$-th cyclotomic field. This is a joint work with Preda Mihailescu.
个人简介:
陈汉,厦门大学学士,厦门大学和法国波尔多大学硕士,2023年获得德国哥廷根大学博士,主要研究领域是数论,特别是丢番图方程、丢番图逼近和代数数论等方面,目前已经在Chinese Annals of Mathematics Series B上接收发表论文。
联系人:祝辉林