报告人:李世顺(信阳师范大学)
时 间:2024年6月13日10:00
地 点:海韵园数理大楼686会议室
内容摘要:
Time-parallel time integration schemes have received a lot of attention over the past two decades. In this talk, we first introduce some time-stepping and time-parallel time integration schemes. Then we present a new type of block implicit methods (BIM) on uniform and non-uniform meshes. Which have desirable stability properties, provide higher-order of accuracy, and offer additional parallelism in time and are more suitable for large scale parallel computers with a large number of processor cores than the traditional time integration methods that are only parallel in space. Further, we show that the traditional finite element theory for parabolic problems discretized by the backward Euler or Crank-Nicolson schemes can also be extended for BIM. Finally, some numerical results obtained on a parallel computer with thousands of processors are reported to demonstrate the effectiveness of BIM.
个人简介:
李世顺,信阳师范大学特聘教授。2011年6月博士毕业于浙江大学数学系。2013年11月-2014年11月为美国科罗拉多大学计算机系博士后,2018年1月-2018年12月为中国科学院深圳先进技术研究院访问学者,2020年7月-2020年12月为澳门大学访问学者。研究方向是区域分解方法和并行算法,目前主要研究时空并行区域分解算法的理论与应用。相关成果发表在SIAM J. Sci. Comput., SIAM J. Numer. Anal., Numer. Linear Algebra Appl.和Appl. Numer. Math.等期刊上。
联系人:陈黄鑫