学术报告
Stability problems of dispersive geometric flows
编辑:发布时间:2020年09月21日

SpeakerDr. Ze Li

                 宁波大学

Title: Stability problems of dispersive geometric flows

Time15:00, 25 Sept., 2020

Location腾讯会议App(会议ID: 225716094)

Abstract:

In this talk, we introduce our recent works on global stability of harmonic maps under dispersive geometric flows, especially wave maps and Schrodinger map flows on hyperbolic planes.  The result is of two types, one is convergence in uniform distance, the other is resolution to harmonic maps and radiations in energy space. The proof is based on geometric linearization and several tools from operator theory and harmonic analysis. We focus on the main picture of the project and provide a sketched proof.

Speaker Introduction

黎泽,博士毕业于中国科学技术大学,曾于中科院数学所任博士后,现在宁波大学数学与统计学院从事教研工作。主要研究方向为几何流和偏微分方程的全局动力学,文章发表在Adv. Math., DCDS, Calc. Var. PDE等著名期刊上。




联系人:宋翀