学术报告
学术报告:Universal Skein theory for group actions.
编辑:发布时间:2019年07月08日

       SpeakerDr. Yunxiang Ren

                         Harvard University

       Title:   Universal Skein theory for group actions.

       Time:10 July 2019, 15:00

Location实验楼105

Abstract:  Given a group action on a finite set, we define the group-action model which consists of tensor network diagrams which are invariant under the group symmetry. In particular, group-action models can be realized as the even part of group-subgroup subfactor planar algebras. Moreover, all group-subgroup subfactor planar algebras arise in this way from transitive actions. In this paper, we provide a universal skein theory for those planar algebras. With the help of this skein theory, we give a positive answer to a question asked by Vaughan Jones in the late nineties.

Speaker  Introduction任云翔,现为哈佛大学数学系和物理系博士后,2017年师从Vaughan Jones毕业于范德堡大学(获数学博士学位),主要研究方向为算子代数中子因子理论,平面代数以及其在量子信息中的应用。