学术报告
学术报告:Gradient estimate and eigenvalues on Kahler manifolds
编辑:发布时间:2019年06月10日

 

      SpeakerDr. Lihan Wang

                       University Of Connecticut(美国)

Title:  Gradient estimate eigenvalues on Kahler manifolds

       Time:11 June 2019, 14:30

Location实验楼105

Abstract:  Consider harmonic functions on complete non-compact manifolds with Ricci curvature lower bounds. In Riemannian case, there are well-known Liouville theorem and gradient estimates by Yau, sharp upper bound of the first eigenvalue by Cheng, rigidity results by Li Wang, other great works. In this talk, we will discuss our recent study of harmonic functions in Kahler case. We obtain a sharp integral gradient estimate, which implies sharp upper bounds of eigenvalues rigidity results. The estimate is sharp means the equality holds in complex hyperbolic space. This talk is based on joint work with O. Munteanu.

Speaker Introduction王丽涵,美国康涅狄格大学Assistant Research Professor. 2013年在加州大学尔湾分校获得博士学位,曾任加州大学河滨分校访问助理教授。研究领域包括流形上的调和函数、p-Laplace方程、辛流形的Hodge理论等;论文发表(或被接受)于Trans. Amer. Math. Soc. 等期刊。


 

       联系人:贺飞助理教授