学术报告
学术报告:Mean curvature flow of surfaces in a hyperkaehler 4-manifold
编辑:发布时间:2019年05月23日

       SpeakerDr. Linlin Sun

                        Wuhan University

Title:  Mean curvature flow of surfaces in a hyperkaehler 4-manifold

       Time:03 June 2019,14:00

Location实验楼105

Abstract:  Abstract: In this talk, I will talk about  the hyper-Lagrangian mean curvature flow in a hyperkaehler manifold. Firstly, there is no nontrivial 2n-dimensional hyper-Lagrangian submanifold in hyperkaehler 4n-manifold when $n>1$.  Secondly,  the mean curvature flow from a closed surface with the image of the complex phase map contained in $\mathbb{S}^2\setminus \overline{\mathbb{S}}^{1}_{+}$ in a hyperkaehler 4-manifold does not develop any Type I singularity.  This is a joint work with Qiu Hongbing.

   Speaker Introduction孙林林,2015年博士毕业于德国马克斯普朗克应用数学研究所和武汉大学,2015-2017年在中国科学技术大学从事博士后研究工作,主要从事Dirac调和映照和子流形曲率刚性等几何分析问题,在JEMS, Calc.Var.,等数学一流期刊上发表论文十余篇。

 联系人:  夏超教授