学术报告
Xiamen Workshop on Lie Theory and Related Topics
编辑:发布时间:2019年01月19日

Xiamen Workshop on Lie Theory and Related Topics

Schedule

Jan. 20

All day

Check inXiamen University International Academic Exchange Center (Yifu Building逸夫楼)

 

Jan. 21Room 661, Building of Mathematics and Physics, Haiyun Campus

A.M

8:15

Please wait at the lobby of the hotel, and we will take the shuttle to the workshop venue together.

8:30-8:40

Welcome speech (Shaobin Tan)

Chair: Haisheng Li

8:40-9:40

Masahiko Miyamoto: C_2-cofintieness of orbifold model

9:40-10:10

Photos, Tea Break

10:10-11:10

Ching Hung Lam: Towards the classification of holomorphic 

vertex operator algebras of central charge 24

 

11:10-12:10

Hongyan Guo:  Twisted Heisenberg-Virasoro vertex operator algebra

P.M

Chair: Shaobin Tan

14:00-15:00

Fei Kong: Twisted quantum affinizations and quantization of Extended affine Lie algebras

15:00-16:00

Saeid Azam: Combinatorial aspects of extended affine Lie algebras

16:00-18:00

Free discussion

20:00

Take the shuttle to the hotel together

 

 

 


 

Abstracts

Jan.21 Monday

 

Masahiko Miyamoto: C_2-cofintieness of orbifold model

Abstract: I will explain ideas to prove the C_2-cofiniteness of subVOAs under suitable assumptions. In particular, we will prove that if V is a C_2-cofinite simple vertex operator algebra of CFT-type with a nonsingular invariant bilinear form and its an automorphism group G is finite, then an orbifold model V^G is also C_2-cofinite. 

 

 

Ching Hung Lam: Towards the classification of holomorphic vertex operator algebras of central charge 24

Abstract: In this talk, we will discuss the recent progress towards

the classification of holomorphic vertex operator algebras of central

charge 24. Some important tools will be discussed. We will stress on

the similarities between the theory of vertex operator algebras and

the theory of integral lattices. In particular, we will discuss a new

approach using the Leech lattice and some orbifold VOAs associated

with its co-invariant lattices.

 

Hongyan Guo:  Twisted Heisenberg-Virasoro vertex operator algebra

Abstract: One of the most important problems in the vertex algebra theory is the construction of vertex algebras from Lie algebras and the study of the equivalences between their module categories. In this talk, we study twisted Heisenberg-Virasoro algebras in the context of vertex algebras.  The structure and representation theory of obtained vertex operator algebras will be discussed. This is a joint work with Professor Qing Wang.

 

Fei Kong: Twisted quantum affinizations and quantization of Extended affine Lie algebras

Abstract: We generalize Drinfeld’s twisted quantum affine algebras to construct twisted quantum affinizations for all symmetrizable generalized Cartan matrices. As an application, we obtain the quantization of extended affine Lie algebras of nullity 2.

 

Saeid Azam: Combinatorial aspects of extended affine Lie algebras

Abstract: Affine Lie theory enjoys a very rich combinatorial nature which has been intensively investigated.We investigate some combinatorial aspects of affine Lie theory for higher nullity extensions, namely for the class of extended affine Lie algebras.