学术报告
学术报告:Cyclic covers of stable curves and the moduli spaces
编辑:发布时间:2018年12月21日

报告人:李斌儒博士

               上海数学中心

报告题目:Cyclic covers of stable curves and the moduli spaces

报告时间:2018年12月24日上午10:40

报告地点:海韵行政楼B313

摘要:I will talk about topics related to the moduli of G-marked stable curves in the case where G is a cyclic group, including the deformation of G- marked stable curves, Teichmüller theory and the existence of a parameterizing space for G-marked stable curves of a given numerical type.

This is then used in order to study the components of the locus of stable curves admitting the action of a cyclic group of non-prime order d, extending work of F. Catanese in the case where d is prime.

报告人简介:李斌儒,2016年博士毕业于拜罗伊特大学(德国),现为上海数学中心博士后。李斌儒的研究领域是代数几何,研究内容涉及代数簇的模空间、代数曲面及双有理几何,研究成果发表在 Commun. Contemp. Math., Rend. Circ. Mat. Palermo等杂志。

联系人:刘文飞教授

欢迎广大师生参加!