学术报告
学术报告:Green′s function estimates and applications
编辑:发布时间:2018年12月11日

报告人:王嘉平教授

           美国明尼苏达大学 (University of Minnesota, Twin Cities)

报告题目:Green's function estimates and applications

报告时间:2018年12月18日下午15:40

报告地点:行政楼B313

摘要:As a consequence of their famous heat kernel estimates, Li and Yau obtained comparable upper and lower bounds for the minimal positive Green's function on a complete manifold with nonnegative Ricci curvature. For manifolds with Ricci curvature bounded below, it remains a difficult task to establish an analogous result. In this talk, we plan to explain a sharp  integral bound for the positive Green's function when the bottom spectrum of the manifold is strictly positive. The result is in turn applied to study the solvability of the Poisson's equation and the geometry of steady Ricci solitons. This is joint work with Munteanu and Sung.

报告人简介: 王嘉平,美国明尼苏达大学教授,J. Geom. Anal., Proc. Amer. Math. Soc.编委。王嘉平教授的主要研究方向是微分几何与偏微分方程,论文发表于Ann. of Math., J. Differential Geom., Ann. Sci. Ecole Norm. Sup., J. Eur. Math. Soc., Math Ann., Adv Math. 等期刊。

联系人:贺飞助理教授

欢迎广大师生参加!