学术报告
学术报告:On a localized Penrose inequality
编辑:发布时间:2018年07月05日

报告人:Siyuan Lu   Hill 助理教授

         Rutgers University

题目:On a localized Penrose inequality

时间:20180710日上午11:00

地点:海韵实验楼105

摘要:We consider the boundary behavior of a compact manifold with nonnegative scalar curvature. The boundary consists of two parts: \Sigma_H and \Sigma_O, where \Sigma_H denotes outer minimizing minimal hypersurface. Under suitable assumption on \Sigma_O, we establish a localized Penrose inequality, which can be viewed as a quasi-local version of the Riemannian Penrose inequality. Moreover, in dimension 3, we prove that the equality holds iff it's a domain in Schwarzschild manifold. This is based on joint works with Pengzi Miao.

报告人简介:Siyuan Lu Rutgers大学的  Hill 助理教授, 2016年博士毕业于McGill大学。他的主要研究方向是非线性几何PDE,目前的兴趣包括等距嵌入和拟局部质量问题,以及Monge-Ampere方程。他的论文发表在如Invent. Math., CAG, IMRN等杂志上。

 

欢迎广大师生参加!