学术报告
学术报告:Global regularity and stability results for the incompressible Boussinesq equations
编辑:发布时间:2018年07月03日

报告人:吴家宏教授

             Oklahoma State University

题目:Global regularity and stability results for the incompressible Boussinesq equations

时间:20180704日下午16:00

地点:海韵数理楼661

摘要:The Boussinesq equations concerned here model large scale atmospheric and oceanic flows that are responsible for cold fronts and the jet stream. In addition, the Boussinesq equations also play an importantrole in the study of Rayleigh-Benard convection. Mathematically the 2D Boussinesq equations serve as a lower-dimensional model of the 3D hydrodynamics equations. In fact, the 2D Boussinesq equations retain some key features of the 3D Euler and Navier-Stokes equations such as the vortex stretching mechanism.The global regularity and the stability problem on the Boussinesq equations have recently attracted considerable interests and there have been substantial developments. This talk summarizes the global regularity results on the Boussinesq equations with partial or fractional dissipation and presents recent work on the stability problem concerning the hydrostatic equilibrium of the 2D Boussinesq equations without thermal diffusion.

报告人简介:吴家宏,美国俄克拉荷马州立大学教授,1988年本科毕业于北京大学,1996年在芝加哥大学获得博士学位。吴家宏教授主要研究来自流体动力学、等离子物理、超导、地球物理、气象学等领域的非线性偏微分方程,在曲面拟地转方程、Navier-Stokes方程、磁流体方程和Boussinesq方程解的整体存在性、唯一性和正则性等方面做出了突出贡献,论文发表在Commun. Pure Appl. Math.Adv. Math.Arch. Ration. Mech. Anal.等国际一流数学期刊,受到多项美国自然科学基金资助,获得美国数学会“Centennial fellowship”奖等。

联系人:王焰金教授

欢迎广大师生参加!