学术报告
学术报告:High order Semi-Lagrangian Methods for Transport Problems with Applications to Nonlinear Vlasov Dynamics
编辑:发布时间:2018年06月04日

报告人:邱竞梅副教授

 美国特拉华大学

题目:High order Semi-Lagrangian Methods for Transport Problems with Applications to Nonlinear Vlasov Dynamics

时间:2018年06月26日上午09:00

地点:海韵数理楼661

摘要:The semi-Lagrangian (SL) scheme for transport problems gains more and more popularity in the computational science community due to its attractive properties. For example, the SL scheme, compared with the Eulerian approach, allows extra large time step evolution by incorporating characteristics tracing mechanism, hence achieving great computational efficiency. In this talk, we introduce a family of high order SL methods coupled with the finite element discontinuous Galerkin (DG) method. The proposed SLDG method is locally mass conservative, highly accurate, free of operator splitting errors, and allows for extra large time stepping sizes with numerical stability and robustness. When applied to nonlinear dynamics, such as the Vlasov model in plasma physics and the incompressible Euler equations for fluid dynamics, high order characteristics tracing schemes are incorporated. We also introduce an adaptive time stepping strategy to enhance the robustness of the method. The method has been extensively tested and benchmarked with classical test problems for transport, Vlasov models in plasma physics and incompressible Euler system

报告人简介:邱竞梅,特拉华大学副教授。2003年于中国科技大学获得理学学士学位,2007年博士毕业于布朗大学,随后在美国密歇根大学做博士后研究。2008年在科罗拉多矿业大学做助理教授;2011年开始在休斯敦大学做助理教授,2014年提升为副教授;2017年在特拉华大学任副教授。研究领域为多尺度流体力学问题的高精度数值方法。

联系人:邱建贤教授

欢迎广大师生参加!