学术报告
学术报告:A problem of existence of horizontal envelops in the 3D-Heisenberg group and its applications
编辑:发布时间:2018年03月09日

报告人:黄彦彰副教授

              信阳师范学院数学与统计学院

题目:A problem of existence of horizontal envelops in the 3D-Heisenberg group and its applications

时间:2018年03月16日下午15:30

地点:海韵实验楼105

 

报告摘要:One of interesting problems in classical geometry is to find the envelope for a family of lines or hypersurfaces in the Euclidean spaces and several applications to Economics and Mathematical Optimization have been developed. After a review of our previous works for finding the pseudohermitian invariants in CR geometry, we will show the necessary and sufficient conditions for the existence of horizontal envelops in the 3D-Heisenberg group by using the standard techniques in Integral Geometry. We obtain a method to construct horizontal envelopes from the given ones and characterize the solutions satisfying the construction. The similar results can be generalized to the higher dimensional Heisenberg groups. 

报告人简介:黄彦彰,台湾中正大学学士,台湾清华大学数学系硕士,美国圣母大学(University of Notre Dame)数学系硕士、博士。先后担任台湾清华大学、中央大学博士后,台湾清华大学、台北科技大学兼任助理教授,厦门大学马来西亚分校助理教授,现任信阳师范学院数学与统计学院副教授。主要从事微分几何、几何分析和积分几何在CR流型上的研究,专注于海森堡群上的不变量分类问题与其在概率与积分几何上应用。近年也带领团队与若干企业产学合作,协助人工智能、数据分析与优化工作。

联系人:罗元勋副教授、杨波副教授、

欢迎广大师生参加!