学术报告
学术报告:Global well-posedness of the 2-D incompressible Navier-Stokes-Cahn-Hilliard system with singular free energy densities
编辑:发布时间:2018年01月18日

报告人:桂贵龙教授

              西北大学

题目:Global well-posedness of the 2-D incompressible Navier-Stokes-Cahn-Hilliard system with singular free energy densities

时间:2018年0120日下午15:00

地点:海韵数理楼661

报告摘要:This talk would focus on the subject of the 2-D incompressible Navier-Stokes-Cahn- Hilliard (NS-CH) system with singular free energy densities. Due to lack of the maximum principle for the convective Cahn-Hilliard equation (as a fourth-order parabolic equation), we construct its approximate second-order parabolic equation, and use comparison principle and the basic energy estimates to separate the solution from the singular values of the singular free energy density, where the Orlicz embedding theorem plays a key role. Based on these, we prove the global well-posedness of the Cauchy problem of the 2-D NS-CH equations with periodic domains by using energy estimates and the Logarithmic Sobolev inequality.

报告人简介:桂贵龙, 博士,西北大学数学学院教授。2010年中国科学院数学与系统科学研究院数学研究所理学博士,20118月至20128月香港中文大学数学科学研究所博士后。2011年获中国科学院百篇优秀博士论文奖,2011年获第十届钟家庆数学奖。主要研究流体力学方程组的数学理论,论文发表在CPAM, CMP, ARMA, Adv. Math., CPDE, JMPA, JFA等。

联系人:王焰金教授

欢迎广大师生参加!