学术报告
学术报告:Precise lower bound estimates of Dirichlet eigenvalues for subelliptic operators
编辑:发布时间:2017年12月26日

报告人:陈化教授

武汉大学

报告题目:Precise lower bound estimates of Dirichlet eigenvalues for subelliptic operators

报告时间:20171229日下午15:00

报告地点:海韵行政楼B313

摘要:Let $\Omega$ be a bounded connected open subset in $\mathbb{R}^n$ with smooth boundary $\partial\Omega$ and $X=(X_{1},X_{2},\cdots,X_{m})$ be a system of real smooth vector fields which satisfying the H\"ormander's condition, $\partial\Omega$ be non-characteristic for $X$. For the $k^{th}$ Dirichlet eigenvalue $\lambda_{k}$ of the self-adjoint subelliptic operator $\triangle_{X}=\sum_{i=1}^{m}X_{i}^{2}$ on $\Omega$, we establish the precise lower bounds of $\lambda_{k}$. Here our results are valid for a class of finitely degenerate sum of squares elliptic operators.

学院联系人:谭忠教授

欢迎广大师生参加!