学术报告
学术报告:Nonexistence of Poincare-Einstein Fillings on Spin Manifolds
编辑:发布时间:2017年12月28日

报告人:韩青教授

              University of Notre Dame(圣母大学)

报告题目:Nonexistence of Poincare-Einstein Fillings on Spin Manifolds

报告时间:2017年12月29日下午15:30

报告地点:海韵实验楼105

摘要:In this talk, we discuss whether a conformal class on the boundary M of a given compact manifold X can be the conformal infinity of a Poincare-Einstein metric in X. We construct an invariant of conformal classes on the boundary M of a compact spin manifold X of dimension 4k with the help of the Dirac operator. We prove that a conformal class cannot be the conformal infinity of a Poincare-Einstein metric if this invariant is not zero. Furthermore, we will prove this invariant can attain values of infinitely many integers if one invariant is not zero on the above given spin manifold. This talk is based on a joint work with Gursky and Stolz.

报告人简介:韩青:国际著名的偏微分方程和几何分析专家,美国圣母大学(University of Notre Dame)教授,北京大学入选者。

学院联系人:邱春晖教授

欢迎广大师生参加!