学术报告
学术报告:The (completely) bounded approximation property, Schauder frames and complemented embedding for Banach and operator spaces
编辑:发布时间:2015年12月01日

报告人:刘锐副教授

                南开大学

 

报告题目: The (completely) bounded approximation property, Schauder frames and complemented embedding for Banach and operator spaces

 

报告时间:2015124日下午1530-17:00

 

报告地点:海韵数理楼  661

 

报告联系人:张文副教授

 

内容摘要:We introduce the concept of (completely bounded) Schauder frames for Banach and operator spaces, show the connection with the (completely) bounded approximation property and complemented embedding, and give the duality results for Schauder frames and associated basis in Banach spaces. We also prove that a separable operator space has the completely bounded approximation property if and only if it has a completely bounded Schauder frame if and only if it is completely isomorphic to a completely complemented subspace of an operator space with a completely bounded basis.

 

报告人简介:

 刘锐,男,南开大学副教授,主要研究泛函分析空间理论,框架理论以及半群上的算子代数。

德国Zentralblatt Math评论员, 美国Mathematical Review评论员。

近年部分代表作品:Dilations for Systems of Imprimitivity acting on Banach Spaces, Journal of Functional Analysis, 266 (2014) 6914-6937. (with D. Han, D.R. Larson and B. Liu)

Operator-valued measures, dilations, and the theory of frames, Memoirs Amer. Math. Soc., Vol.229 No.1075 (2014). (with D. Han, D.R. Larson and B. Liu)

Generalized-lush spaces and the Mazur-Ulam property, Studia Math., 219 (2013) 139-153. (with X. Huang and D. Tan).

 

欢迎广大师生参加!