副教授
白朝芳

职称:副教授

职务:

学历:研究生

电子邮件:baizhaofang@xmu.edu.cn

联系电话:0592-2580690

办 公 室:厦门大学海韵园伟德国际1946源自英国B楼B411

教育经历:

1998年7月 山西师范大学应用数学学士学位

2001年7月 山西师范大学应用数学硕士学位

2004年12月 西安交通大学应用数学博士学位


工作经历:

2005年至今: 厦门大学

2014/7-2015/7:圭尔夫大学、滑铁卢大学访问学者


研究方向:

算子代数、算子理论、量子关联、量子相干


授课情况:

数学分析、高等数学A类

获奖:

2009年山西省自然科学奖二等奖(排名四)

2019年福建省自然科学奖三等奖(排名二)



主持项目:

1、算子代数上的不变量,天元基金(10626043),3万,研究期限2007年1月至2007年12月,主持人.

2、算子代数上的自同构与量子力学的对称及对称群,国家青年自然科学基金(11001230),17万,研究期限2011年1月至2013年12月,主持人.

3、算子集合上的自同构量子信息中的纠缠,福建省自然科学基金(2014J01024),6万,研究期限2014-2016. 主持人.

4、量子相干的理论研究,福建省自然科学基金(21181074),6万,研究期限2014-2016. 主持人.

5、量子相干与量子纠缠的映射特征,国家面上自然科学基金(11671332),研究期限2017-2020,第一合作者.

论文:

[1] Bai Z., Hou J., Linear maps and additive maps that preserve operators annihilated by a polynomial, Journal of Mathematical Analysis and Applications, 271(2002), 139-154.

[2] Bai Z., Hou J., Numerical radius distance preserving maps on B(H), Proceeding. American. Math. Society, (132)2004, 1453-1461.

[3] Bai Z., Hou J., Maps preserving numerical radius distance on C*-algebras, Studia Math., (162)2004, 97-104.

[4] Bai Z., Hou J., Additive maps preserving nilpotent operators or spectral radius, Acta. Mathematica Sinica(English series), 21(2005), 1167-1182.

[5] Bai Z.,Hou J., Characterizing isomorphisms between standard algebras by spectral functions, Journal of Operator Theory, 54(2005), 291-303.

[6] Du S., Hou J., Bai Z., Additive maps preserving similarity or astmptotic similarity on B(H). Linear and Multilinear Algebra, 2007, 55:209-218.

[7] Du S., Hou J., Bai Z., Nonlinear maps preserving similarity on B(H). Linear Algebra and its Applications. 2007, 422:506-516.

[8] 白朝芳,侯晋川,保零积或约当零积的映射,数学年刊,29A(2008),663-670。

[9] Bai Z, Du S., Hou J. , Multiplicative Lie isomorphism between prime rings. Communications in Algebra, 2008, 36:1626-1633.

[10] Bai Z., Du S., Multiplicative *-Lie isomorphism between factors. Journal of Mathematical Analysis and Applications, 2008, 346: 327-335.

[11] Bai Z., Hou J., Du S., Additive maps preserving rank one operators on nest algebras, Linear and Multilinear Algebra, 2010, 58: 269-283。

[12] Bai Z., Du S., Characterization of sum automorphisms and Jordan triple automorphisms of quantum probabilistic maps, J. Physics A: Mathematical and Theoretical, 2010, 43: 165210

[13] Du S., Hou J., Bai Z. Maps preserving unitary similarity on B(H). Rocky Mountain Journal of Mathematics, 2011, 41, 1157-1172.

[14] Bai Z., Hou J., Du S., Distance presrving maps on nest algebras, Linear and Multilinear Algebra,2011, 59, 571-594.

[13] Bai Z.,Du S., Multiplicative *-Lie isomorphisms between von Neumann algebras, Linear and Multilinear Algebra, 2012, 60, 311-322.

[14] Bai Z.,Du S.,The structure of nonlinear Lie derivations on von Neumann algebras, Linear Algebra and Its Applications,2012,436,2701-2708.

[15] Bai Z., Du S, Maps preserving products XY-YX* on von Neumann algebras, Journal of Mathematical Analysis and     Applications, 2012, 386, 103-109.

[16] Guo Y.,Bai Z.,Du S.,Local channels preserving maximal entanglement or Schmidt number, International Journal of Theoretical Physics,2013,52,3820-3829

[17] Bai Z., Du S., Quantum channels fixing a convex cone of density operators on T(H), J. Physics A: Math. Theor., 2014,47, 175302。

[18] Bai Z.,Du S., Strong communativity preserving maps on rings, Rocky Mountain Journal of Mathematica,  2014,44,733-742.

[19]Guo Y.,Bai Z.,Du S.,When quantum channel preserves product states, Reports on Math. Phys.,2014,74,277-282.

[20] Bai Z., Du S., Quantum channels fixing a convex cone of density operators on T(H), J. Physics A: Math. Theor., 2014,47, 175302.

[21] Du S., Bai Z., The Wigner-Yanase information can increase under phase sensitive incoherent operations, Annals of Physics, 2015, 359,136-140.

[22] Du S., Bai Z., Guo Y., Conditions for coherence transformations under incoherent operations, Physical Review A, 2015, 91,052120.

[23] Bai Z.,Du S., Maximally coherent states, Quantum Information & Computation, 2015,15,1307-1316.

[24] Du S., Bai Z., Qi X., Coherence measures and optimal conversion for coherent states, Quantum Information & Computation, 2015,15,1355-1364.

[25] Du S., Bai Z., Guo Y., Erratum: Conditions for coherence transformations under incoherent operations [Phys. Rev. A 91, 052120 (2015)], Physical Review A, 2017, 95, 029901.

[26] Du S., Bai Z., Qi X, Coherence Manipulation under incoherent operations, Physical Review A, 2019, 100, 032313.