副教授
陈东阳

职称:副教授

职务:

学历:博士

电子邮件:cdy@xmu.edu.cn

联系电话:

办 公 室:厦门大学海韵园伟德国际1946源自英国B楼B613

教育经历:

•Ph. D., Nankai University, 2001-2004.

•M.S.,  Fujian Normal University, 1998-2001.

•B.S.,Fujian Normal University, 1994-1998.

工作经历:

•Texas A&M University:  Visiting Scholar, September 2015-September 2016.

•Texas A&M University:  Visiting Scholar, October 2009-November 2010.

•Xiamen University: Post-doc, January 2005-September 2007.

•Chern Institute of  Mathematics: Visiting Scholar, May-July 2008.

•Xiamen University: Associate Professor, 2007-present.

•Xiamen University: Assistant Professor, 2004-2007.

研究方向:

Primary: Banach space theory, operator theory.

Secondary: Nonlinear functional analysis, frame theory.

主持项目:

• National Natural Science Foundation of China(No.11971403), 2020.01.01-2023.12.31.

• Natural Science Foundation of  Fujian Province of China(No.2019J01024), 2019.07.01-2022.06.30.

• Natural Science Foundation of  Fujian Province of China(No.2015J01026), 2015.04.01-2018.03.31.

• National Natural Science Foundation of China(No.10526034), 2006.01.01-2006.12.31.

• National Natural Science Foundation of China(No.10701063), 2008.01.01-2010.12.31.

论文:

21. Chen Dongyang, Amar Belacel and  Javier Alejandro Chavez-Dominguez, Positive p-summing operators and disjoint p-summing operators,  Positivity. (to appear)

20. Chen Dongyang and  Ruan Yingbin, Quantitative Bessaga-Pelczynski property and quantitative Rosenthal property,  Math. Nachr. 292(2019), 1685-1700.

19. Amar Belacel and  Chen Dongyang*, Lipschitz (p,r,s)-integral operators and Lipschitz (p,r,s)-nuclear operators,  J. Math. Anal. Appl. 461(2018), 1115-1137.

18. Chen Dongyang, Javier Alejandro Chavez-Dominguez and Li Lei,  p-converging  operators and Dunford-Pettis property of order p,  J. Math. Anal. Appl. 461(2018), 1053-1066.

17. Chen Dongyang, Positive approximation properties of Banach lattices, Taiwanese Journal of Mathematics. 22(2018), 617-633.

16. Li Lei, Chen Dongyang* and Javier Alejandro Chavez-Dominguez,  Pelczynski's property (V*)  of order p and its quantification,  Math. Nachr. 291(2018), 420-442.

15. Chen Dongyang,  A quantitative version of  the Johnson-Rosenthal theorem, Ann. Funct. Anal. 8(4)(2017), 512-519.

14. Chen Dongyang and Li Lei , The approximation properties determined by operator ideals, Acta Math. Sin.(Engl.Ser.) 33(2017), 311-326.

13. Chen Dongyang, Li Lei and Meng Qing, Orthogonality preservers of  JB*-triple-valued functions, Taiwanese Journal of  Mathematics, 20(2016), 1393-1400.

12. Chen Dongyang, Kim Ju Myung and Zheng Bentuo,  The weak bounded approximation property of pairs, Proc. Amer. Math.Soc. 143(2015), 1665-1673.

11. Chen Dongyang, Johnson William B and Zheng Bentuo, Corrigendum to  ``Commutators on (\sum l_q)_p'/info/1082/',  Studia Math. 223(2014), 187-191.

10. Chen Dongyang, Li Lei and Zheng Bentuo, Perturbations of  frames, Acta Math. Sin.(Engl.Ser.) 30(2014), 1089-1108.

9.Chen Dongyang, Li Lei, Wang Risheng and Wang Ya-shu, Non-vanishing preservers and compact weighted composition operators between spaces of Lipschitz functions. Abstr. Appl.Anal.2013, Art.ID 741050,8 pp.

8.Chen Dongyang and Zheng Bentuo, Three-space problems for the bounded compact approximation property. Acta Math. Sin.(Engl.Ser.)29(2013),625-632.

7.Chen Dongyang and Zheng Bentuo, Lipschitz p-integral operators and Lipschitz p-nuclear operators. Nonlinear Anal.75(2012),5270-5282.

6.Chen Dongyang, Johnson William B and Zheng, Bentuo, Commutators on (\sum lq  )p . Studia Math.206(2011),175-190.

5.Chen Dongyang and Zheng Bentuo, Remarks on Lipschitz p-summing operators. Proc. Amer. Math. Soc.139(2011),2891-2898.

4.Chen Dongyang, Asymptotically isometric copies of  lp  and c0 in Banach spaces.  Acta Math.Sci.Ser.B Engl.Ed.26(2006),no.2,281-290.

3.Chen Dongyang, A note on James's distortion theorem.(Chinese)Acta Math.Sinica(Chin.Ser.)47(2004),no.6,1223-1224.

2.Chen Dongyang, Asymptotically isometric copies of  c0  and l1 in quotients of  Banach spaces. Collect.Math.55(2004),no.3,237-242.

1.Chen Dongyang, Asymptotically isometric copies of  c0  and l1 in certain Banach spaces. J. Math. Anal. Appl.284(2003),no.2,618-625.